이동 경화법칙 - kinematic hardening rule

기술용어통 반디통 용어집

강재와 같이 결정체로 이루어진 금속이 외부로부터 하중을 받아 영구적인 변형, 소성변형(plastic deformation)을 일으키는 응력(stress)의 크기를 항복응력(yield stress)이라고 한다. 그리고 소성변형에 따라 금속 내부 결정체의 미끄러짐 혹은 전이(dislocation)에 의해 항복응력이 증가하는 현상을 재료의 경화(hardening)라고 부른다.

임의 물체의 항복은 한 방향으로의 응력 성분만의 크기로 결정되는 것이 아니라, 직교하는 3축 방향으로의 응력성분들의 조합에 의해 결정된다. 3차원 공간 상에서 X, Y 그리고 Z축을 설정하고 항복이 시작되는 응력의 상태를 나타내면 구(sphere) 혹은 다각형(polygon) 형상의 곡면이 된다. 그리고 이 곡면을 특별히 항복곡면(yielding surface)이라고 부른다.

물체 내 임의 지점에서의 응력상태가 이 구 혹은 다각형 내부에 속한다면 그 지점은 아직 항복이 발생하지 않은 탄성영역 내에 있다. 하지만 물체 내 어떤 지점에서의 응력상태가 이 항복곡면 외부에 속한다면 이 지점에서는 이미 항복이 시작되었다. 그런데 앞서 언급한 재료의 경화가 발생하면 이 항복곡면은 팽창하게 되에 항복응력이 증가하게 된다.

항복곡면이 팽창하는 형태는 모든 방향으로 같은 크기로 팽창하는 경우, 각 방향으로 각기 다른 크기로 팽창하는 경우, 그리고 곡면의 크기는 일정한 채 그 중심이 이동하는 경우로 구분할 수 있다. 첫 번째 경우를 등방성 경화(isotropic hardening), 두 번째 경우를 이방성 경화(anisotropic hardening), 그리고 마지막 경우를 이동성 경화라고 부른다. 그리고 이러한 경화 거동을 수학적으로 표현한 모델을 경화법칙(hardening rule)이라고 부르며, 이동 경화를 수학적으로 표현한 수식을 이동 경화법칙이라고 한다.

. C260

기술용어통 응력 category-cae 소성변형 항복응력

더 빠른 설계를 위한 첫 걸음!

해석 정확도를 높이고, 반복 작업을 줄여보세요.

내게 맞는 솔루션 찾기